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Abstract

It is well known that the presence of nonlinearities may significantly affect the aeroelastic response of an aerospace

vehicle structure. In this paper, the aeroelastic behaviour at high Mach numbers of an all-moving control surface with a

nonlinearity in the root support is investigated. Very often, under certain flight conditions, a stable equilibrium point,

corresponding to zero displacement of the structure, together with an unstable limit cycle arising from a sub-critical Hopf

bifurcation results from the presence of the nonlinearity. The dynamic aeroelastic response to external excitation is also of

interest, and when sinusoidal forcing is applied, the stable equilibrium point may then be replaced by a periodic attractor,

and the limit cycle by an unstable multi-periodic solution. With or without this forcing, there is an attractor which will

possess a domain of attraction. In this paper, the problem of estimating these domains of attraction is tackled using

Zubov’s method. In the absence of forcing, the method is applied directly to the aeroelastic equations, while for the forced

system, the method of averaging is applied to approximate the aeroelastic equations by an autonomous system. The

behaviour of the system with forcing is also investigated for flight speeds below a threshold which may occur where the

unstable limit cycle of the unforced system disappears. In this regime, the nonlinear system may nevertheless still possess

multiple attractors, and their domains of attraction are investigated, again using an averaged form of the aeroelastic

equations. In this study, the nonlinearity in the root support was assumed to be due to a cubic hardening restoring

moment. The Zubov approach, which always yields conservative estimates, was shown to be capable of rapidly giving a

good indication of stability domain boundaries under many conditions. Although this investigation focuses on an

aeroelastic system, the general form of equations considered arises in many other settings, so that the approach would be

relevant to a whole range of engineering applications.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In carrying out aeroelastic analysis for an aircraft or missile, the structure, aerodynamics and controls
(if considered) are generally modelled with the assumption of linearity. A major objective of the analysis is to
determine a flutter boundary in terms of flight speed and various design parameters. In practice, nonlinearities
may be present that are capable of significantly affecting aeroelastic behaviour. Typical phenomena resulting
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

A, B matrices in averaged forms of aeroelastic
equations using invertible van der Pol
transformation

a1, a2, a3, a4 slowly varying variables in aver-
aging procedure

aF
i ith generalised mass of control surface

aN free stream speed of sound
b control surface root semi-chord

bs mean semi-chord for sth strip of control
surface

eF
i ith generalised stiffness of control sur-

face

dF
ij structural damping coefficient

f function defining nonlinearity in fin root
support

fi right hand side of ith nonlinear equation

G damping matrix in aeroelastic equations
H stiffness matrix in aeroelastic equations
hs vertical displacement of sth strip at point

Os

Iij coefficient of _X j in equation for general-
ised aerodynamic force QAi

I1s,y, I5s integrals depending on control surface
thickness used in aerodynamics

K linear torsional stiffness at root
Ls load per unit span for sth strip
M̄ right hand modal matrix in solution of

linearised aeroelastic equations
N̄ left hand modal matrix in solution of

linearised aeroelastic equations
MN free stream Mach number
Ms torsional moment per unit span for sth

strip about Os

P transformation matrix used in averaging
aeroelastic equations

p0, q0 transformed x0, y0
Q1, Q2, Q3, Q4 generalised coordinates arising

from transforming X and Y

Q01, Q02, Q03, Q04 transformed generalised co-
ordinates used in averaged form of
aeroelastic equations

QAi ith generalised aerodynamic force
QEi ith generalised force due to external

excitation
QMi ith generalised force on fin due to

torsional reaction loads
Rij coefficient of Xj in equation for general-

ised aerodynamic force QAi

r column vector relating fin root torsion
angle to generalised displacements in
aeroelastic equations

s column vector used in defining nonlinear
terms in aeroelastic equations

t time
t0 non-dimensionalised time ( ¼ ~ot)
UN free stream velocity
VN non-dimensionalised speed in aeroelastic

equations
Vn nth order term in series expansion for V

V(N) series expansion of V up to order N

V Lyapunov function
xi ith dependent variable in nonlinear

equations
xs, ys, zs coordinates for sth strip in aerodynamic

model
xos non-dimensional distance of Os from

leading edge of sth strip
X1, X2 generalised displacements
x0, y0 amplitudes of external forcing function
X column vector of generalised displace-

ments
Y derivative of X with respect to time
Z transformation of X in averaged form of

aeroelastic equations using invertible
van der Pol method

w downwash on control surface
g ratio of specific heats
Dh strip width
e nonlinearity parameter
ys pitch rotation of sth strip
yy pitch rotation of control surface at root
rN free stream density
ts(xs) non-dimensional thickness distribution

function for sth strip
f positive definite function in Zubov equa-

tion
fF

i ith natural mode for control surface

fF
is ith modal displacement of the sth strip

cF
iys ith modal pitch rotation of the sth strip

cF
iy0 ith modal pitch rotation of control

surface at root
n alternative form of Lyapunov function
~o frequency used in non-dimensionalising

time t

oF
i ith natural frequency of control surface

o1, o2 frequencies in solution of linear aero-
elastic system

o0 forcing frequency
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from the presence of nonlinearities include the onset of stable limit cycle oscillations through a super-critical
Hopf bifurcation beyond the flutter boundary determined by linear theory, or the existence of unstable limit
cycles within the linear flutter boundary associated with a sub-critical Hopf bifurcation. In the former case, the
effect of the nonlinearity may be regarded as beneficial if the limit cycle oscillations are small, whereas in the
latter case, the nonlinearities could lead to the possibility of divergent oscillations occurring within the linear
flutter boundary as the equilibrium point of the system will possess some domain of attraction. It is this case
that is considered in this paper. The aeroelastic behaviour in response to external excitation is also of interest,
and when sinusoidal forcing is applied, the stable equilibrium point may then be replaced by a periodic
attractor which will also possess a domain of attraction. The behaviour of the system with forcing is of interest
for flight speeds below a threshold where the unstable limit cycle of the unforced system disappears. In
particular, close to a resonance, the nonlinear system may exhibit multiple attractors, which will therefore
possess domains of attraction.

One approach to carry out a theoretical study of nonlinear aeroelastic behaviour is to perform the analysis
in the time domain. However, a drawback with this is that though it can yield a complete picture of system
behaviour for a particular set of initial conditions, it may be inefficient in providing an overall picture of
system characteristics even for a single set of system parameters. In aeroelastic studies carried out during
development of an aerospace vehicle, it is necessary to consider a wide range of flight conditions and design
parameters, and thus there is a strong motivation to apply or develop alternative analysis techniques.
Amongst these are averaging methods [1–10] in some of which, nonlinearities are replaced by ‘equivalent’
stiffnesses or dampings. These are attractive as they may then enable linear analysis techniques to be applied.
A wide range of bifurcational behaviour may be encountered in nonlinear aeroelastic systems, and a number
of investigations have demonstrated this both theoretically and experimentally [11–17]. Consequently, the
application of nonlinear dynamical systems theory in the field of aeroelasticity is of great interest. Holmes [18]
investigated panel flutter in terms of the bifurcations that are possible as in-plane load and air speed are
varied, while Anderson employed generic modelling to interpret observed nonlinear transonic aeroelastic
behaviour and to suggest the existence of new phenomena not previously encountered in computational
studies [19]. Dowell et al. [12] studied conditions necessary for chaotic motion of a buckled plate with external
excitation in an aerodynamic flow. Centre manifold theory has been used to predict limit cycle oscillations in
nonlinear aeroelastic systems. Examples of this approach include Grzedzinski [20], Liu et al. [21] and Sedaghat
et al. [22].

Many applications of the analysis techniques discussed above have been concerned with the investigation of
possible limit cycles of nonlinear aeroelastic systems. This paper considers an all-moving control surface flying
under conditions where it possesses attractors with domains of attraction. In this paper, analysis is carried out in
terms of estimating these domains of attractions, and thus focuses on a slightly different aspect of the nonlinear
behaviour of aeroelastic systems. A variety of techniques have been developed to tackle the problem of stability
domain estimation. One approach is that of Lee et al. [23] who used the interpolated mapping method. Another
approach is through the determination of the stable manifold for unstable equilibria which was taken by Lewis
[24], who investigated a second-order two-degree-of-freedom (dof) nonlinear aeroelastic system.

Another major class of methods is those based on the Lyapunov method, and in particular the construction
method of Zubov [25]. He showed that Lyapunov functions giving the entire domain of stability of an
autonomous nonlinear system satisfy a certain partial differential equation. Many papers have discussed how
approximate solutions to Zubov’s equation, and hence domain of attraction estimates, can be obtained in
practice. Approaches include the use of truncated power series approximations [26,27] and Lie series based
methods [28,29]. Many illustrations of the use of the method are limited to two-dof first-order systems,
although one example of analysis of a four-dof system is due to Dimantha et al. [27]. The aeroelastic equations
considered here also comprise a four-dof first-order system. This paper shows the practicality of Zubov’s
method for the stability domain analysis of such a system by way of the power series approach implemented
through the use of computer algebra. It builds on the study by Lewis [24] through exploring another approach
to stability domain analysis and by extending the investigation to consider the frequency response of the
system.

Although formulations of Zubov’s equation for certain classes of non-autonomous systems, or autonomous
systems with periodic attractors have been developed [30,31], the determination of stability domains in
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practice does not appear straightforward. Hence, in studying the forced nonlinear aeroelastic system, the
averaging approach was adopted to obtain an approximate autonomous system of equations. This was done
for both resonance and non-resonance conditions. The use of the method of averaging in stability domain
estimation has been considered by Loud and Sethna [32] and Gilsinn [33]. Gilsinn showed that one might
anticipate that the use of an averaged system of equations would lead to conservative stability domain
estimates. This study therefore brings together two nonlinear analysis techniques, namely perturbation
methods and Lyapunov theory, to tackle the problem of stability domain estimation with the aid of computer
algebra in a practical manner, suitable for parametric studies.

Although this investigation focuses on an aeroelastic system, it is important to note that the general form of
governing equations for the system considered arise in many settings, so that the approach described in this
paper would be applicable in a range of engineering scenarios.

The layout of this paper is as follows. Section 2 discusses the derivation of the aeroelastic equations for the
all-moving control surface in high speed supersonic flow. In Section 3, averaged forms of the equations are
obtained. Section 4 then reviews Zubov’s approach to stability domain determination and practical
approaches to obtaining stability domain boundaries. Section 5 presents results from Zubov’s method and
comparisons are made with predictions of the domains of attraction of the attractors of the system obtained
by numerical integration of the aeroelastic equations in their original form. Throughout, the case of a cubic-
hardening nonlinearity in the torsional dof of the root support of the control surface is considered. Concluding
remarks are then given in Section 6.

2. Aeroelastic equations

In this section, the form of the aeroelastic equations for an all-moving control surface with a single root
support in a uniform supersonic flow is discussed. It is assumed that the control surface structure deforms
linearly, and that the root support force-deflection characteristics are linear in bending but nonlinear in
torsion. The control surface is assumed to be performing small oscillations about a mean incidence angle of
zero. The equations of motion for the control surface subjected to a set of external forces are first derived.
These external forces comprise the aerodynamic loads obtained using third-order piston theory [34], the
nonlinear torsional moment about the control surface hinge line due to the root support, and external
excitation.

The undisplaced control surface is illustrated in Fig. 1. Fixed Cartesian axes are defined with the origin
P being the point where the root support is located. Control surface chordwise sections are assumed to be
symmetrical, with the x-axis taken to be along the root chord line of symmetry with the positive direction
towards the trailing edge; the y-axis is then the hinge line for the undeformed control surface, for which the
x–y plane is a plane of symmetry. If the control surface is modelled as a plate structure, then its deformation
may be defined in terms of vertical displacements of the mid-surface and rotations about the x and y axes.
x

y

P

z

Hinge Line 

Leading
Edge

Fig. 1. Lifting surface and axis system.
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The control surface root chord is assumed to be unconstrained except at the root support P where bending and
torsional rotations may occur, but no translational displacements are permitted. Modes and frequencies for
the control surface are then determined for a given bending stiffness and an assumed linear torsional stiffness
of the root support. Let the control surface modes be fF

1 ðx; yÞ, f
F
2 ðx; yÞ; . . . and let the associated natural

frequencies be oF
1 , o

F
2 . . .. The generalised masses and stiffnesses of the control surface may then be evaluated

and are denoted by aF
1 , aF

2 . . . and eF
1 , eF

2 . . . ; respectively.
Suppose now that the control surface is subject to forces through aerodynamic loadings arising from

structural deformation, torsional reaction loads due to the nonlinearity in the root support, together with an
external forcing function. Then the equations of motion for the control surface may be obtained in the form:

aF
i
€X i þ

X
j

dF
ij
_X j þ eF

i X i ¼ QMi þQAi þQEi (1)

for i ¼ 1, 2, 3,y where dF
ij denotes a structural damping coefficient and X1, X2, y are generalised coordinates

defining the control surface motion in terms of the modes fF
1 ðx; yÞ, f

F
2 ðx; yÞ,y. QMi is the ith generalised force

due to the torsional reaction loads exerted on the control surface by the nonlinearity in the root support, QAi is
the ith generalised force due to the aerodynamic loads, QEi is the ith generalised force due to external forcing.

Let My be the torsional moment acting on the control surface due to the nonlinearity in the root support.
Assuming that this is a nonlinear function of the control surface root torsional angle yy and angular rate _yy,
QMi is given by:

QMi ¼Myðyy; _yyÞc
F
iy0 (2)

where cF
iy0 is the torsional rotation of the control surface at the root for the ith mode so that yy may be written:

yy ¼
X

i

cF
iy0X i (3)

In this investigation, the aerodynamic loadings on the control surface are evaluated using third-order piston
theory [34] applied as strip theory so that the control surface is divided spanwise into a series of aerofoils
undergoing heaving and pitching motions for which the lift and pitching moment may readily be determined.
This approach is justifiable so long as the control surface does not have a very low aspect ratio or where
significant chordwise deformations occur. Piston theory aerodynamics is applied at high supersonic speeds
typically corresponding to Mach numbers between 2.5 and 7.0. The key assumption in piston theory is that the
local pressure on an aerofoil surface is related to the normal component of the local fluid velocity in the same
manner that the pressure on a piston in a fluid filled tube is related to the velocity of the piston. In the form of
the theory used for the present study, the pressure at a point on the fin surface is given by:

p� p1 ¼ r1a2
1

w

a1
þ

1

4
ðgþ 1Þ

w

a1

� �2

þ
1

12
ðgþ 1Þ

w

a1

� �3
( )

(4)

where w is the local downwash for the moving lifting surface, rN is the free stream density, aN the freestream
speed of sound, pN freestream pressure and g the ratio of specific heats. In general, the downwash may be
written as a sum of steady state contributions due to thickness and mean angle of attack of the lifting surface
together with unsteady contributions arising from its motion. In this study, a zero mean incidence is assumed,
and only terms linear in unsteady displacements are retained.

Consider now the symmetric aerofoil section shown in Fig. 2, having semi-chord bs. In the undisturbed
position, it lies with its line of symmetry along the Osxs axis of a coordinate system where xs, ys, zs are non-
dimensionalised with respect to 2bs, with the leading edge a distance xos forward of the origin Os. The aerofoil
thickness distribution, non-dimensionalised with respect to 2bs, is given by ts(xs). The aerofoil lies in a uniform
flow with velocity UN. and undergoes heaving and pitching motions hs and ys as defined in Fig. 2. Thus the
downwash on the aerofoil is given by:

w

U1
¼ �

_hs

U1
þ ys þ

2bs

U1
ðxs � x0sÞ

_ys

" #
þ

1

2

dts

dxs

(5)
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Ls

xs

zs

θs Ms

2bsxos

Os

hs

2bs

U∞

Fig. 2. Notation for analysis of an aerofoil section.

x
P

2b

θs

y
z

Hinge Line 

Leading
Edge  

2bsxos

sth
strip

Δh

hs

Fig. 3. Notation used in implementation of strip theory.
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where the minus sign applies to the upper surface and the plus sign to the lower surface of the aerofoil.
Substituting Eq. (5) into Eq. (4) will then enable the pressure difference between the upper and lower aerofoil
surfaces to be obtained. The force per unit span Ls and the pitching moment per unit span Ms about Os defined
in the sense shown in Fig. 2 may then be obtained. Given these, the aerodynamic loading on the lifting surface
may now be determined by strip theory. Let the lifting surface be divided up into strips, capable of vertical
translation and pitch rotation due to its elastic deformation as shown in Fig. 3. hs and ys are now the
displacement and pitch rotation for the sth strip as shown. The average distance of the leading edge of the sth
strip from the ys axis is 2bsxos. Let b be the length of the root semi-chord. Ls and Ms are then given by:

Ls ¼ �4r1bU2
1

ls1

U1M1

_hs þ
ls2

M1

ys þ
ls3

U1M1

_ys

� �

Ms ¼ �4r1bU2
1

ms1

U1M1

_hs þ
ms2

M1

ys þ
ms3

U1M1

_ys

� �
(6)
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where

ls1 ¼ ls2 ¼
bs

b
1þ

1

4
ðgþ 1ÞM2

1I3s

� �

ls3 ¼
b2

s

b
1� 2xos þ ðgþ 1ÞM1I1s þ

1

2
ðgþ 1ÞM2

1ðI4s � xosI3sÞ

� �

ms1 ¼ ms2 ¼ ls3

ms3 ¼
b3

s

b

4

3
� 4xos þ 4x2

os þ 2ðgþ 1ÞðI2s � 2xosI1sÞM1 þ gþ 1ð ÞM2
1 I5s � 2xosI4s þ x2

osI3s

� �� �
(7)

and I1s, I2s, I3s, I4s and I5s are functions of thickness distribution and are given by:

I1s ¼
1

2

Z 1

0

xs

dts

dxs

dxs; I2s ¼
1

2

Z 1

0

x2
s

dts

dxs

dxs; I3s ¼
1

4

Z 1

0

dts

dxs

� �2

dxs;

I4s ¼
1

4

Z 1

0

xs

dts

dxs

� �2

dxs; I5s ¼
1

4

Z 1

0

x2
s

dts

dxs

� �2

dxs (8)

where it is assumed that the leading and trailing edge thicknesses are zero so that ts(0) ¼ ts(1) ¼ 0. Denote by
fF

is and cF
iys the ith modal displacement and rotation of the sth strip. Then hs and ys may be written in terms of

generalised displacements as:

hs ¼ �
X

i

fF
isX i

ys ¼
X

i

cF
iysX i (9)

The virtual work per unit span on the sth strip by the aerodynamic forces in producing a translation dhs and
pitch rotation dys as a result of increments dX1, dX2,y in the generalised displacements may then be
determined, from which the generalised aerodynamic force for the sth strip, QA

si , can be found from:

QA
si ¼ DhðMsc

F
iys � Lsf

F
isÞ (10)

where Dh is the strip width. Making use of Eqs. (6)–(9) in Eq. (10) then leads to the following expression for QA
si :

QA
si ¼ �4r1U2

1bDh
X

j

As
ij

M1

X j þ
Bs

ij

M1U1
_X j

� 	
(11)

where As
ij and Bs

ij are given by:

As
ij ¼ ms2c

F
iysc

F
jys � ls2f

F
isc

F
jys

Bs
ij ¼ �ms3c

F
iysc

F
jys � ms1f

F
jsc

F
iys þ ls1f

F
isf

F
js þ ls3c

F
jysf

F
is (12)

The ith generalised force for the overall aerodynamic loading on the lifting surface is then obtained by summing
the contributions for all strips. Thus writing:

Rij ¼ Dh
X

s

As
ij; I ij ¼ Dh

X
s

Bs
ij (13)

enables the generalised force QAi due to the aerodynamic forces to be written in terms of the generalised
displacements X1, X2, X3,y in the following way:

QAi ¼ �4r1U2
1b
X

j

Rij

M1

X j þ
I ij

M1U1
_X j

� 	
(14)
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The external forcing function will be assumed to be sinusoidal with frequency o0. Thus combining Eqs. (1), (2)
and (14) together with the external forcing term then yields the aeroelastic equations in the form:

€XþG _XþHXþ �f ðrTX; rT _XÞs ¼ x0 sin o0tþ y0 cos o0t (15)

where X is the column vector of the generalised coordinates X1, X2,y,e is a parameter governing the strength of
the nonlinearity. G and H are damping and stiffness matrices whose elements are given by:

Gij ¼
dF

ij

aF
i

dij þ
4r1bU2

1I ij

M1U1aF
i

Hij ¼
eF

i

aF
i

dij þ
4r1bU2

1Rij

M1aF
i

(16)

and r, s are column vectors whose elements are given by:

ri ¼ cF
iy0; si ¼

cF
iy0

aF
i

(17)

so that:

yy ¼ rTX; �f ðrTX; rT _XÞ ¼ �Myðyy; _yyÞ (18)

and x0, y0 are constant column vectors governing the magnitude and phase characteristics of the external forcing.
These aeroelastic equations will now be solved numerically in the time domain and also using the averaging

method as described in Section 3.

3. Averaged forms of the aeroelastic equations

In this section, the application of the method of averaging to the analysis of Eq. (15) is described. It will now
be assumed that the motion of the control surface is described by the lowest two modes of the structure only,
so that the aeroelastic equations become a two-dof second-order system. In the linear case, the flutter
behaviour of a lifting surface alone may frequently be determined with acceptable accuracy by an analysis
involving only these modes, particularly in the case where one mode involves predominantly bending and the
other involves mostly torsion. In this investigation, the form of the aeroelastic equations used in the nonlinear
analysis has therefore been kept as simple as possible, with the potential effect of higher modes on the stability
domain analysis lying outside the scope of this study. In the case of unforced motion of this system
(x0 ¼ y0 ¼ 0), Zubov’s method may be applied directly to Eq. (15). Averaging is therefore intended for use in
the case of forced motion, and the range of forcing frequencies considered will be such that modes beyond the
two retained in the formulation of the aeroelastic equations will have negligible effect. There are two distinct
situations to be considered, namely the non-resonance and resonance conditions.

Consider the non-resonance case to begin with. Eq. (15) is first written as a four-dof first-order system as
follows:

Ū
_X
_Y

 !
¼ V̄

X

Y

� �
� �

0

s

� �
f þ

0

x0

 !
sin o0tþ

0

y0

 !
cos o0t (19)

where

Ū ¼
�H 0

0 I

� �
; V̄ ¼

0 �H

�H �G

� �
(20)
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I denotes the 2� 2 identity matrix and Y ¼ _X. Let N̄ and M̄ denote the left hand and right hand matrices of
eigenvectors that would arise in the eigenvalue problem that would occur when solving Eq. (19) for f ¼ 0 and
in the absence of forcing (x0 ¼ y0 ¼ 0). These will have the form:

M̄ ¼
M M�

Ml M�l�

" #
; N̄ ¼

N lN

N� l�N�

" #
(21)

where l ¼ diag{m1, m2} with m1, m2 being the eigenvalues and * denoting the complex conjugate. The particular
form of N̄ and M̄ arises because Y ¼ _X. Thus if for an eigenvalue mi, where X ¼ X0e

mi t, it follows that
Y ¼ X0mie

mi t. In this study, it is assumed that in the linearised aeroelastic equations considered m1, m2 will
always possess both non-zero real and imaginary parts—i.e. divergence will not occur. Now define coordinates
Q1, Q2, Q3, Q4 by the linear transformation:

X

Y

� �
¼

ReðMÞ � ImðMÞ ReðMÞ þ ImðMÞ

ReðMmÞ � ImðMmÞ ReðMmÞ þ ImðMmÞ

" # Q1

Q2

Q3

Q4

0
BBBB@

1
CCCCA (22)

where ‘Re’ and ‘Im’ denote the real and imaginary parts of the matrices concerned. With this transformation,
Eq. (19) may now be written as:

_Q1

_Q2

_Q3

_Q4

0
BBBBB@

1
CCCCCA ¼

l1 0 o1 0

0 l2 0 o2

�o1 0 l1 0

0 �o2 0 l2

0
BBBBB@

1
CCCCCA

Q1

Q2

Q3

Q4

0
BBBBB@

1
CCCCCA� �

ReðrÞ þ ImðrÞ

ReðrÞ � ImðrÞ

 !
f

þ
Reðs1Þ þ Imðs1Þ

Reðs1Þ � Imðs1Þ

 !
sin o0tþ

Reðs2Þ þ Imðs2Þ

Reðs2Þ � Imðs2Þ

 !
cos o0t (23)

where r ¼ lNs, s1 ¼ lNx0, s2 ¼ lNy0 and mk ¼ lk+iok. It should be noted that o1 and o2 are the frequencies
of the aeroelastic modes and are distinct from the lifting surface structure natural frequencies oF

1 and oF
2 .

Now make the following definitions:

c ¼
ReðrÞ þ ImðrÞ

ReðrÞ � ImðrÞ

 !
; d1 ¼

Reðs1Þ þ Imðs1Þ

Reðs1Þ � Imðs1Þ

 !
; d2 ¼

Reðs2Þ þ Imðs2Þ

Reðs2Þ � Imðs2Þ

 !
(24)

K ¼

l1 0 o1 0

0 l2 0 o2

�o1 0 l1 0

0 �o2 0 l2

0
BBB@

1
CCCA (25)

and define a new vector of variables Q0 such that:

Q ¼ Q0 þ K1 sin o0tþ K2 cos o0t (26)

where Q ¼ (Q1, Q2, Q3, Q4)
T and K1 and K2 are column vectors whose values are yet to be fixed. Eq. (26) is

now substituted into Eq. (23) and K1 and K2 are chosen so as to remove all terms in sino0t and coso0t other
than those that occur in the nonlinear function f. Thus K1 and K2 are then given by:

K1 ¼
1

o0
ðKK2 þ d2Þ; K2 ¼ ð�o2

0I� K2
Þ
�1
ðKd2 þ o0d1Þ (27)
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and Eq. (23) is reduced to:

_Q
0
¼ KQ0 � �cf (28)

making use of the expressions for c given in Eq. (24) and K in Eq. (25). The method of averaging assumes that
the nonlinearities in the system result in an oscillatory solution with slowly varying amplitude and phase. For
the situation to be considered, it may be assumed that o1–o2 ¼ O(e) and l1 ¼ l2 ¼ O(e). Let the displacements
Q01, Q02, Q03, Q04 now be transformed into a new set of displacements a1, a2, a3, a4 as follows:

Q01

Q02

Q03

Q04

0
BBBB@

1
CCCCA ¼

sin o1t 0 cos o1t 0

0 sin o1t 0 cos o1t

cos o1t 0 � sin o1t 0

0 cos o1t 0 � sin o1t

2
6664

3
7775

a1

a2

a3

a4

0
BBB@

1
CCCA (29)

where a1, a2, a3, a4 will be assumed to be slowly varying. In terms of these new displacements, Eq. (28) may
now be written as:

_a1

_a2

_a3

_a4

0
BBB@

1
CCCA ¼

l1 0 0 0

0 l2 0 o1 � o2

0 0 l1 0

0 o2 � o1 0 l2

0
BBB@

1
CCCA

a1

a2

a3

a4

0
BBB@

1
CCCA� �

g1 sin o1tþ g3 cos o1t

g2 sin o1tþ g4 cos o1t

g1 cos o1t� g3 sin o1t

g2 cos o1t� g4 sin o1t

0
BBBB@

1
CCCCAf (30)

where c ¼ (g1, g2, g3, g4)
T.

Consider now the nonlinear function f. In this application, f is a function of rTX. Substituting for X in terms
of Q using Eq. (22), and in terms of Q0 using Eq. (26), and ultimately in terms of a1, a2, a3, a4 using Eq. (29)
results in:

rTX ¼ a0 sin o0tþ b0 cos o0tþ a1 sin o1tþ b1 cos o1t (31)

where

a0 ¼ ½ReðrTMÞ � ImðrTMÞ ReðrTMÞ þ ImðrTMÞ�K1

b0 ¼ ½ReðrTMÞ � ImðrTMÞ ReðrTMÞ þ ImðrTMÞ�K2

a1 ¼ ½ReðrTMÞ � ImðrTMÞ ReðrTMÞ þ ImðrTMÞ�

a1

a2

�a3

�a4

0
BBB@

1
CCCA

b1 ¼ ½ReðrTMÞ � ImðrTMÞ ReðrTMÞ þ ImðrTMÞ�

a3

a4

a1

a2

0
BBB@

1
CCCA (32)

Noting that the non-resonance case is being considered, so that o1–o0 ¼ O(1), the averaged form of Eq. (30) is
now obtained by writing f0 ¼ o0t, f1 ¼ o1t and then performing a double integration of Eq. (30) with respect
to f0, f1 over the range 0–2p. The averaged form of the equations may then be written as:

_a1

_a2

_a3

_a4

0
BBB@

1
CCCA ¼

l1 0 0 0

0 l2 0 o1 � o2

0 0 l1 0

0 o2 � o1 0 l2

0
BBB@

1
CCCA

a1

a2

a3

a4

0
BBB@

1
CCCA� �

g1Is þ g3Ic

g2Is þ g4Ic

g1Ic � g3Is

g2Ic � g4Is

0
BBBB@

1
CCCCA (33)
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where

Is ¼
1

4p2

Z 2p

0

Z 2p

0

f sin f1df0df1; Ic ¼
1

4p2

Z 2p

0

Z 2p

0

f cos f1 df0 df1 (34)

For the particular case of a cubic hardening nonlinearity, f may be written as:

f ðrTXÞ ¼ KðrTXÞ3 (35)

so that Is and Ic will be given by:

Is ¼
3

8
Ka1ð2a20 þ 2b20 þ a21 þ b21Þ; Ic ¼

3

8
Kb1ð2a

2
0 þ 2b20 þ a21 þ b21Þ (36)

Consider now the resonance case. Eq. (15) are first transformed by defining the new variable Z such that:

Z ¼ PX ¼

r1 r2
�s2

jsj

s1

jsj

0
@

1
AX (37)

where r ¼ (r1, r2)
T; s ¼ (s1, s2)

T. Eq. (15) may then be written as:

€Zþ A _Zþ BZþ �
c

0

� �
f ðZ1Þ ¼ p0 sin o0tþ q0 cos o0t (38)

where

A ¼ PGP�1; B ¼ PHP�1; p0 ¼ Px0; q0 ¼ Py0; c ¼ rTs (39)

and Z ¼ (Z1, Z2)
T. Now apply the invertible van der Pol transform. Thus:

Z1

Z2

_Z1

_Z2

0
BBB@

1
CCCA ¼

sin o0t 0 cos o0t 0

0 sin o0t 0 cos o0t

cos o0t 0 � sin o0t 0

0 cos o0t 0 � sin o0t

2
6664

3
7775

a1

a2

a3

a4

0
BBB@

1
CCCA (40)

where a1, a2, a3, a4 are slowly varying terms. The nonlinear term f is then written as a Fourier series expansion:

f ðZ1Þ ¼ f ða1 sin o0tþ a3 sin o0tÞ ¼ Js sin o0tþ Jc cos o0tþ � � � (41)

Eq. (41) is then substituted into Eq. (38), terms in coso0t and sino0t are equated with the higher harmonics
being neglected. This results in the following set of autonomous equations for a1, a2, a3, a4:

0 �Io0

Io0 0

 ! _a1

_a2

_a3

_a4

0
BBB@

1
CCCAþ

B� o2
0I �o0A

o0A B� o2
0I

 ! a1

a2

a3

a4

0
BBB@

1
CCCAþ �c

Js

0

Jc

0

0
BBB@

1
CCCA ¼

p0

q0

 !
(42)

For the particular case of a cubic hardening nonlinearity, where f is given by Eq. (35):

Js ¼
3

4
Ka1ða

2
1 þ a2

3Þ; Jc ¼
3

4
Ka3ða

2
1 þ a2

3Þ; (43)

Eq. (33) for the non-resonance case and Eq. (42) for the resonance case will be used when considering the
forced system.

4. Zubov’s method for stability domain analysis

Zubov’s method for the determination of the domain of stability of a stable equilibrium point of a system of
autonomous nonlinear ordinary differential equations as it will be applied in this paper will now be discussed.
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For an n dof autonomous nonlinear system given by:

_xi ¼ f iðx1;x2; . . . ;xnÞ (44)

for which (x1, x2, y, xn) ¼ (0, 0,y, 0) is an asymptotically stable equilibrium point, the domain of attraction
of this point may be determined through obtaining a solution V to the partial differential equation:

Xn

i¼1

qV

qxi

f i ¼ �fðx1;x2; . . . ; xnÞð1� V Þ (45)

where V(0,0,y,0) ¼ 0 and:

qV

qx1
ð0; . . . ; 0Þ ¼

qV

qx2
ð0; . . . ; 0Þ ¼ � � � ¼

qV

qxn

ð0; . . . ; 0Þ ¼ 0 (46)

where in Eq. (45), f is a positive definite function. The function V satisfying Eq. (45), (46) is then a Lyapunov
function determining the asymptotic stability of the equilibrium point (0,0,y,0) [25,26]. Furthermore, if a
point (x1, x2, y, xn) lies in the domain of stability of (0,0,y,0), then:

0pV ðx1;x2; . . . ; xnÞo1 (47)

and the boundary of the domain of stability is given by:

V ðx1;x2; . . . ;xnÞ ¼ 1 (48)

In practice exact solutions to Eq. (45) can be seldom found. However a unique series solution may be found in
the form:

V ðx1;x2; . . . ; xnÞ ¼ V 2ðx1; x2; . . . ; xnÞ þ V3ðx1;x2; . . . ;xnÞ þ . . . (49)

where Vn denotes a homogeneous polynomial of degree n in x1, x2,y,xn. Substituting this form for V in
Eq. (45) and equating coefficients successively for V2, V3,y enables the coefficients to be obtained by solving a
series of linear simultaneous equations. Suppose that V(N) denotes the series expansion for V, truncated at
degree N. Consider now the set W(N) of points (x1, x2,y,xn) other than (0,0,y,0) for which:

_V
ðNÞ
¼
Xn

i¼1

qV ðNÞ

qxi

f i ¼ 0 (50)

Then if C(N) is the minimum value of V(N) for (x1, x2,y,xn) in W(N), then the boundary defined by:

V ðNÞðx1;x2; . . . ;xnÞ ¼ CðNÞ (51)

will lie wholly within the domain of attraction of (0,0,y,0) [26]. This then provides the method for
approximating a domain of attraction of an attractor.

A number of papers illustrate the application of this method [26,35]. It is well established that although
taking increasing numbers of terms in the power series (49) leads to increasing accuracy of the stability domain
predictions, this does not necessarily occur in a monotone manner, and consequently, a large number of terms
may be needed to improve upon an initial estimate using only quadratic terms. However, an alternative
approach is to define another function v(x1, x2,y,xn) by the relation:

V ¼ 1� e�v (52)

v then satisfies the partial differential equation:

Xn

i¼1

qv

qxi

f i ¼ �fðx1;x2; . . . ;xnÞ (53)

Eq. (53) is now solved by obtaining n as a power series solution, and the domain of attraction boundary
estimate may then be found noting that _V ¼ 0 if and only if _v ¼ 0, and a maximum value of n will correspond
to a minimum of V. There is experience to suggest that the use of the function v requires fewer terms in the
power series solutions [35] and this approach will be adopted in the subsequent analysis. One limitation on the
practical application of this approach has been the computational complexity that may arise from many dof.
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However, with the use of computer algebra to construct the linear simultaneous equations determining the
coefficients in the polynomial expansion of V(N) or n(N) this limitation may be alleviated so that the analysis of
the fourth-order system of aeroelastic equations becomes very practical. Having obtained V(N) and C(N) (or the
equivalents if working in terms of n), the estimated domain of attraction is fully defined for all initial
conditions.

Finding solutions to the constrained optimisation problem defined by Eqs. (50) and (51) is achieved by using
a sequential quadratic programming method. The starting solution may be taken as a point close to the stable
equilibrium point. An alternative approach is to start close to an unstable equilibrium point, if there is one, as
it will lie on the boundary of the domain of attraction of the stable equilibrium point.

The function f must be positive definite, but other than this can be quite arbitrary. As has been done in
other studies (e.g. Ref. [27]), in this paper, it will be chosen to be given by:

fðx1;x2; . . . ; xnÞ ¼
Xn

i¼1

x2
i (54)

5. Results

In this section a number of examples of the use of Zubov’s method for predictions of the domains of
attraction of attractors for an all-moving control surface in supersonic flow, whose aeroelastic behaviour is
governed by Eq. (15) are given, for free and forced motion. All examples consider a control surface for which
full details are given in Appendix A. Given there are the geometric characteristics together with the natural
modes and associated generalised masses and stiffnesses in the case when the root attachment torsional
stiffness is zero. This modal data was derived from a finite element model of the lifting surface. For the
determination of the aerodynamic loadings on the control surface, thickness effects were neglected. Flight is
assumed to take place under sea level international standard atmosphere conditions.

These examples consider the case where the control surface possesses a cubic hardening nonlinearity in the
root torsional dof. Thus the moment My in Eq. (2) may be written:

My ¼ �KrTX� �KðrTXÞ3 (55)

where K is a linear torsional spring constant. In formulating the aeroelastic equations, the linear terms arising
from Eq. (55) were incorporated into the matrix H. Thus the function f could be written:

f ðrTXÞ ¼ KðrTXÞ3 (56)

In this example K was taken as 75.9Nm/rad. The flutter speed of the linear system (e ¼ 0) was first determined
and speed was then non-dimensionalised with respect to this. Additionally, a non-dimensional time t0 ¼ ~ot

was defined so that the flutter frequency of the linear system would be O(1). To achieve this the value of ~o was
taken as 1800 rad/s. The matrices G, H and vectors r, s that define the aeroelastic equations for the control
surface could then be evaluated, using the data of Appendix A, to be:

G ¼
1:84329� 10�2 2:48859� 10�3

3:98055� 10�4 1:81111� 10�2

" #

H ¼
0:16727V1 þ 0:42110 0:16820V1 þ 0:49896

�0:24317V1 þ 7:98092� 10�2 1:31621� 0:25748V1

" #

r ¼
1:0

1:18488

� 	
; s ¼

0:421104

7:98092� 10�2

� 	
(57)

where VN is the non-dimensional speed defined as explained previously such that VN ¼ 1.0 is the flutter speed
for the linear system. The matrix G gives the aerodynamic damping terms and is independent of speed. This
arises because control surface thickness effects have been neglected in the aerodynamics. Thus the integrals I1s,
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I2s, I3s, I4s and I5s are zero so that the coefficients Iij in Eq. (15) may be readily shown to be independent
of speed.

Prior to the domain of stability investigations, a study was carried out to investigate the nonlinear
aeroelastic behaviour of the system in the absence of forcing for e40 in terms of the existence of possible limit
cycles and their stability. The limit cycles were determined by using the averaged equations (33). However, in
order to carry out this analysis, the equations were re-written in terms of the following transformed variables:

a1 ¼ A1 cos f1; a2 ¼ A2 cos f2; a3 ¼ A1 sin f1; a4 ¼ A2 sin f2 (58)

Eq. (33) may then be rewritten as:

_A1 ¼ l1A1 �
�
ffiffiffi
2
p

2p

Z 2p

0

ðs1R sin c1 � s1I cos c1Þf dc1

_A2 ¼ l2A2 �
�
ffiffiffi
2
p

2p

Z 2p

0

ðs2R sinðyþ c1Þ � s2I cosðyþ c1ÞÞf dc1

_y ¼ o2 � o1 �
�
ffiffiffi
2
p

2pA2

Z 2p

0

ðs2R cosðyþ c1Þ þ s2I sinðyþ c1ÞÞf dc1 þ
�
ffiffiffi
2
p

2pA1

Z 2p

0

ðs1R cos c1 þ s1I sin c1Þf dc1

(59)

where y ¼ c2�c1, r ¼ (s1, s2)
T and the subscripts ‘R’ and ‘I’ refer to the real and imaginary parts of s1,

s2. r
TX may be rewritten in terms of A1, A2, c2, c1 as:

rTX ¼
ffiffiffi
2
p

ReðrTMÞ
sin c1

sinðc1 þ yÞ

 !
þ

ffiffiffi
2
p

ImðrTMÞ
cos c1

cosðc1 þ yÞ

 !
þ a0 sin o0tþ b0 cos o0t (60)

Limit cycles of Eq. (15) for zero forcing (so that a0 ¼ 0, b0 ¼ 0) then correspond to non-zero equilibrium
points ðA0

1;A
0
2; y

0
Þ of Eq. (59). A stability analysis of Eq. (59) for small perturbations about an equilibrium

point will readily identify whether a limit cycle is stable or not.
For the system considered, Fig. 4 shows the variation of limit cycle amplitude with flight speed plotted in

terms of
ffiffi
�
p
jrTXj against VN. Stability analysis confirmed that the limit cycles were unstable and the results

were checked using numerical integration in the time domain. Thus VN ¼ 1.0 is the speed at which sub-critical
Hopf bifurcation occurs for the nonlinear system, with the equilibrium point O being stable for VNo1.0.
Below VN ¼ 0.81, the unstable limit cycle vanishes, and the only attractor is the point O. Thus there are two
flight regimes which will be of interest. In Regime I, for which 0oVNo0.81, the system possesses a sole stable
equilibrium point at O. In Regime II, for which 0.81oVNo1.0, the system possesses a stable point at O

together with the an unstable limit cycle. This is illustrated in Fig. 4.
0.7

0.8

0.9

1.0

1.1

1.20.80.40.0

V
∞

XrTε

Regime I – One attractor at O only 

Regime II – Attractor at O 
together with unstable limit cycle

Sub-critical Hopf bifurcation 

Fig. 4. Variation of limit cycle amplitude with non-dimensionalised speed VN.
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Fig. 6. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, initial conditions _X
ð0Þ

1 ¼ 0:0, _X
ð0Þ

2 ¼ 0:0; ~ Zubov method N ¼ 4,

D Zubov method N ¼ 6.
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Fig. 5. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, initial conditions _X
ð0Þ

1 ¼ 0:0, _X
ð0Þ

2 ¼ 0:0; o time domain prediction,

D Zubov method N ¼ 2, ~ Zubov method N ¼ 4.
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For the initial study, e ¼ 0.025 and VN ¼ 0.99431; thus the nonlinearity is weak and the air-flow speed is
very close to the linear flutter speed. The choice of value for e then implied that rTX should be regarded as
being proportional to, rather than equal to, the root torsion angle yy. In the absence of forcing, Zubov’s
method may be applied to the time domain form of the aeroelastic Eq. (15) directly. This was done for power
series expansions of the Lyapunov function up to order N ¼ 2, 4 and 6. The nature of the nonlinear equations
of motion is such that there are no terms of odd order in the expansions.

Comparisons of the domain of attraction of O are shown in Fig. 5 for _X
ð0Þ

1 ¼ 0 and _X
ð0Þ

2 ¼ 0. In the legend
‘Time Domain Prediction’ refers to numerical integration of Eq. (15). It is clear that N ¼ 4 gives a much less
conservative prediction of the domain of attraction than N ¼ 2. Fig. 6 shows comparisons for N ¼ 4 and
N ¼ 6 which indicates that little, if any, improvement is achieved by including the extra terms.

The stability domains of attractors of the aeroelastic equations in the presence of excitation were now
investigated. This required the use of the averaged forms Eqs. (33) and (42) of the aeroelastic equations in
order to work with autonomous equations as required in the Zubov analysis. The natural frequencies for the
fin with the chosen airspeed were o1 ¼ 0.937020 and o2 ¼ 0.979064, so that it was the case that
o1�o2 ¼ O(e). A preliminary first study was carried out using Eq. (33) in the absence of external excitation.

Fig. 7 shows comparisons of the domain of attraction of O for _X
ð0Þ

1 ¼ 0 and _X
ð0Þ

2 ¼ 0 and Zubov analysis for
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Fig. 8. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, initial conditions _X
ð0Þ

1 ¼ �0:25, _X
ð0Þ

2 ¼ �0:5; o time domain

prediction, ~ Zubov method with averaged equations.

-0.4

-0.2

0

0.2

0.4

-0.8
X1

X
2

-0.4 0 0.4 0.8

Fig. 7. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, initial conditions _X
ð0Þ

1 ¼ 0:0, _X
ð0Þ

2 ¼ 0:0; o time domain prediction,

~ Zubov method with averaged equations.
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Fig. 9. Attractor predictions for e ¼ 0.025, VN ¼ 0.999431, y0 ¼ (0.75,0.75)T, o0 ¼ 2.0; - - - time domain, o averaging.
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Fig. 10. Multi-periodic solution predictions for e ¼ 0.025, VN ¼ 0.999431; y0 ¼ (0.75,0.75)T; o0 ¼ 2.0; - - - time domain; o averaging.
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Fig. 11. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, y0 ¼ (0.10,0.10)T, o0 ¼ 2.0, initial conditions _X
ð0Þ

1 ¼ 0:0,

_X
ð0Þ

2 ¼ 0:0; o time domain prediction, ~ Zubov method with averaged equations.
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the case N ¼ 4. It is interesting to note that the Zubov domain of attraction estimate in this case is better than
that obtained from working directly from the original form of the aeroelastic equations (15). As a further

example, Fig. 8 shows domains of attraction predictions for _X
ð0Þ

1 ¼ �0:25 and _X
ð0Þ

2 ¼ �0:5.
The effect of forcing was now considered. The first studies were carried out for non-resonance cases, and

thus Eq. (33) was used. Figs. 9 and 10 show how the attractors of the system are modified in the presence of
excitation in the case where o0 ¼ 2.0 and x0 ¼ 0, y0 ¼ (0.75,0.75)T. Time domain analysis readily reveals the
existence of a periodic attractor which replaces the point attractor. This is shown in Fig. 9 together with the
averaging method prediction. The attractors are found in the averaging method by setting _a1 ¼ _a2 ¼ _a3 ¼

_a4 ¼ 0 in Eq. (33). A multi-periodic solution may also be found in time domain analysis by a trial and error
process to locate initial conditions resulting in trajectories very close to the solution. This multi-periodic
solution may also be identified using the averaging method in the form of Eq. (59). The projection of the
solution in the X1–X2 plane is shown in Fig. 10, and consists of a set of points whose closure will be a
parallelogram as shown. The boundary of this parallelogram as predicted by the averaging method is also
shown. Domain of attraction estimates were now determined for a number of cases. The results of these
studies are shown in Figs. 11 and 12 for the cases o0 ¼ 2.0 and excitation levels of x0 ¼ 0, y0 ¼ (0.10,0.10)T
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Fig. 12. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, y0 ¼ (0.75,0.75)T, o0 ¼ 2.0, initial conditions _X
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1 ¼ 0:0,
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Fig. 13. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.999431, y0 ¼ (0.02,0.02)T, o0 ¼ 0.88, initial conditions _X
ð0Þ

1 ¼ 0:0,

_X
ð0Þ

2 ¼ 0:0; o time domain prediction, ~ Zubov method with non-resonance averaged equations, n Zubov method with resonance

averaged equations.
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and x0 ¼ 0, y0 ¼ (0.75,0.75)T, respectively, for _X
ð0Þ

1 ¼ 0 and _X
ð0Þ

2 ¼ 0. In these and all subsequent cases, the
Lyapunov function has been determined up to terms in N ¼ 4. The resulting domain of attraction estimates
agree well with time domain predictions.

A study for the resonance case was now carried out where x0 ¼ 0, y0 ¼ (0.02,0.02)T, and forcing frequencies

o0 were of the order 0.9. In all cases, domains of attraction were determined for _X
ð0Þ

1 ¼ 0 and _X
ð0Þ

2 ¼ 0. In this

study, both the resonance (Eq. (42)) and non-resonance form (Eq. (33)) of the averaging equations were used.
Figs. 13–15 show domain of attraction predictions for three o0 values close to 0.9. Figs. 13 and 14 show
stability domain predictions for o0 values of 0.88 and 0.89, respectively, and it may be seen that close
agreement between predictions using the two averaging method formulations and fair agreement with time
domain predictions is obtained. For o0 ¼ 0.9, Fig. 15 shows that Zubov analysis using both averaging
formulations give very different but conservative stability predictions in both cases indicating that the stability
domain was close to disappearing. However, it should be noted that with an increase in o0 to 0.91, time
domain stability domain analysis predicts the disappearance of the domain of attraction.

All the studies discussed hitherto have been for an air speed in Regime II, where 0.81oVNo1.0. A study
was now carried out for VN ¼ 0.766687, which lies in Regime I. In this case, in the absence of excitation, the
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system has one attractor only. In the presence of excitation, a typical frequency response is as shown in
Fig. 16, for which the excitation level is given by x0 ¼ 0, y0 ¼ (0.3,0.3)T. Predictions have been made using
time domain analysis and averaging using the van der Pol form of averaging (Eq. (42)) by setting
_a1 ¼ _a2 ¼ _a3 ¼ _a4 ¼ 0. For frequencies in the region 0.85–0.95, there are two periodic attractors together with
one unstable periodic solution. The two periodic attractors will possess domains of attraction and these will
now be investigated using the Zubov method in conjunction with the resonance form of the averaging
equations Eq. (42). In this case, the equilibrium points, which correspond to the periodic solutions, are non-
zero, and thus the polynomial expansion for the Lyapunov function has to include odd terms. The domain of
attraction of the periodic attractor with the smaller amplitude will be estimated. The expansion was taken up
to N ¼ 4 in all these cases. Figs. 17–19 show stability domain predictions for o0 ¼ 0.95 and increasing levels of

excitation for _X
ð0Þ

1 ¼ 0 and _X
ð0Þ

2 ¼ 0. Thus what is shown is a two-dimensional section through the full domain

of attraction, which is contained in a four-dimensional space. The shaded regions indicate the domain of
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Fig. 17. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.766687, y0 ¼ (0.1, 0.1)T, o0 ¼ 0.95, initial conditions _X
ð0Þ
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Fig. 18. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.766687, y0 ¼ (0.2, 0.2)T, o0 ¼ 0.95, initial conditions _X
ð0Þ

1 ¼ 0:0,

_X
ð0Þ

2 ¼ 0:0; time domain prediction, � Zubov method prediction of boundary.
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Fig. 19. Domain of attraction estimates for e ¼ 0.025, VN ¼ 0.766687, y0 ¼ (0.3, 0.3)T, o0 ¼ 0.95, initial conditions _X
ð0Þ

1 ¼ 0:0,

_X
ð0Þ

2 ¼ 0:0; time domain prediction, � Zubov method prediction of boundary.
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attraction for the attractor with smaller amplitude, while the white regions indicate the domain of attraction of
the attractor with the larger amplitude as predicted by time domain analysis. The curve in black indicates the
boundary of the domain of attraction for the attractor with small amplitude as predicted by the Zubov
method. Fig. 17 shows comparisons of time domain and Zubov-based predictions for x0 ¼ 0, y0 ¼ (0.1,0.1)T.
It will be seen that the stability domain as predicted by time domain studies has a very complex geometry,
consisting of a central domain surrounded by a series of bands. When the excitation level is increased to
x0 ¼ 0, y0 ¼ (0.2,0.2)T, the central region persists, although it is reduced in size and the surrounding bands are
much thinner. For a further increase in the excitation level to x0 ¼ 0, y0 ¼ (0.3,0.3)T the central region has
reduced further still, and the surrounding bands have largely disappeared. In all cases, the Zubov method gives
not unreasonable, and in all cases conservative, estimates of the central region of the stability domains. The
bands which form part of the small amplitude attractor domain of attraction are not captured by the Zubov’s
method. However, from a practical point of view, if one wished to specify ranges of initial conditions which
would assure a return to the attractor, the most straightforward way to do this would be based on the central
domain of the attractor. From this perspective, the fact that the Zubov approach does not capture the full
complexity of the domains of attraction need not be a major drawback.
6. Concluding remarks

In this paper, the aeroelastic behaviour at high Mach numbers of an all-moving control surface with a
nonlinearity in the root support has been investigated. The particular situation investigated is that where a
stable equilibrium point, corresponding to zero displacement of the structure, together with an unstable limit
cycle typically arising from a sub-critical Hopf bifurcation results from the presence of the nonlinearity so that
the stable equilibrium point will then possess a domain of attraction. The dynamic aeroelastic response is also
of interest. When sinusoidal forcing is applied, the stable equilibrium point may then be replaced by a periodic
attractor, and the limit cycle by a multi-periodic solution. With or without this forcing, there is an attractor
which will possess a domain of attraction. The problem of estimating these domains of attraction has been
tackled using Zubov’s method. In the absence of forcing, the method was applied directly to the aeroelastic
equations, while for the forced system, the method of averaging was applied to approximate the aeroelastic
equations by an autonomous system. The behaviour of the system was also investigated for flight speeds below
the threshold where the unstable limit cycle of the unforced system disappears. In this regime, the forced
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nonlinear system may still possess multiple attractors, and the domain of attraction of the attractors for this
situation was investigated also, again using an averaged form of the aeroelastic equations.

The partial differential equation arising in Zubov’s method was solved by a series expansion approach
which was made viable for the system of nonlinear aeroelastic equations by the use of computer algebra. For
the cases considered, it was possible to obtain a fair approximation to the domain of attraction with a fourth
order series expansion, and going to sixth order gave little improvement. Two forms of averaging were applied
when analysing the forced response of the system. It was shown that for the case where the air speed was such
that the unforced system possessed an unstable limit cycle, the non-resonance form of the averaging method
resulted in stability domain predictions at least as good as those obtained from the resonance form of the
averaging equations even if this form of the equations was strictly more appropriate. For air speeds below this
threshold, and for forcing frequencies where multiple attractors existed, the method was shown to be capable
of giving a good indication of the extent of the central region of the complex attractors that occurred.
Although their full complexity is not captured by the Zubov method, from a practical point of view, this need
not be a major drawback since if one wished to specify ranges of initial conditions which would assure a return
to the attractor, the most straightforward way to do this would be based on the central domain of the
attractor.

The examples considered indicate that, in general, the Zubov method gives a good indication of the domain
of attraction of an attractor. The method is highly efficient in that once the function V(N), together with C(N),
have been found, the estimated domain of attraction within the four-dimensional phase space is fully
determined. The conservative nature of the estimates is also an advantage from a practical point of view.
Through the use of computer algebra, the Zubov method may be readily implemented for multi-dof systems.
Although this investigation focuses on an aeroelastic system, the form of equations considered is such that the
approach would be relevant to many other engineering applications.
Appendix A. Numerical data for aeroelastic models

The lifting surface considered in these studies had the geometric characteristics shown in Fig. A1. Thickness
effects are neglected.

The mode shapes, together with generalised mass and stiffness data are given in Tables A1 and A2.
87.78mm 

34.91mm 

36.0mm 

85.54mm 

Hinge

Fig. A1. Lifting surface geometry.
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Table A2

Generalised mass and stiffness data.

Mode number i aF
i eF

i cF
iy0

1 5.562880� 10�5 0.0 1.000000

2 3.477841� 10�4 1.589684� 103 1.184876

Table A1

Modal data.

Strip numbers 2bs (mm) 2bsxos (mm) fF
1s fF

2s cF
1ys cF

2ys

1 80.4738 46.6290 �2.125213� 10�3 3.124895� 10�3 1.000000 1.158449

2 70.3494 40.7550 �6.375600� 10�3 1.528817� 10�2 1.000000 1.133542

3 60.2250 34.8810 �1.062600� 10�2 3.386578� 10�2 1.000000 1.078578

4 50.1006 29.0070 �1.487640� 10�2 5.785579� 10�2 1.000000 1.041359

5 39.9762 23.1330 �1.912680� 10�2 8.590975� 10�2 1.000000 1.005500
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